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The Unit Commitment Problem

The Unit Commitment Problem (UC) is a large-scale mixed-integer nonlinear program for finding a 
low-cost operating schedule for power generators.

These problems typically have quadratic objective functions and non-linear, non-convex transmission 
constraints.
◦ Typically both of  these are linearized

Starting in 2005 with PJM, market operators in the United States have transitioned from using 
Lagrangian relaxation to solve UC to using mixed-integer programming (MIP) and a commercial 
solver such as CPLEX, Gurobi, or Xpress.
◦ MIPs usually have many equivalent formulations, and UC is no exception.

The day-ahead problem has an hourly time horizon which is solved for 36 to 48 hours ahead to 
prevent end-of-horizon effects, and has hundreds to thousands of  generators and up to tens of  
thousands of  buses.

In practice, it is desirable to have a UC solution in 10 to 15 minutes.
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Contributions

We catalog existing formulations for the UC problem as originally described by Carrion and Arroyo (2006).
◦ Improvements to this formulation have been the subject of  several subsequent papers, including Ostrowski et al. (2012), 

Morales-Espana et al. (2013), Damci-Kurt et al. (2016), Pan et al. (2016), K. et al. (2018), K. et al. (2018), Atakan et al. 
(2018).

We preform computational experiments on 41 different UC formulations, some novel, and some from the 
literature, on 68 UC instances.
◦ Largest instance has 900+ generators over 48 hours with hourly time horizon
◦ This took approximately two weeks of  wall-clock time!

We make publically available on GitHub reference implementations for all the formulations examined in the 
Pyomo modeling language in the EGRET library. We will also make publically available the UC instances 
considered.

We contribute some additional results on both valid variable upper bound inequalities and piecewise linear 
formulations for production costs, driven in part by our prior computational experience.

We introduce two novel UC formulations, one of  which is a new combination of  existing components, and the 
other draws on on new components as well as existing formulations. The later formulation significantly 
improves on the performance of  any previously reported UC formulation, establishing a new state-of-the-art.

3



The Unit Commitment Problem

UC is that of  minimizing system operating costs subject to the system constraints and the technical 
constraints of  the generators.

Generator technical constraints
◦ Convex (piecewise linear) production costs
◦ Minimum and maximum output levels
◦ Ramping constraints
◦ Minimum up/down time
◦ Downtime dependent startup costs

4

Knueven, Ostrowski, and Watson: On MIP Formulations for the Unit Commitment Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

In all, this paper puts forth a new benchmark for the unit commitment problem. While

we do not consider various extensions of UC, e.g., stochastic or robust variants, di↵erent

reserve products, or improvements to the network model, nearly every extension has at

its core formulations of the generation units, the variants of which is the primary focus of

this paper. We therefore believe the results herein are broadly relevant to extensions of the

unit commitment problem.

3. Overview

We formulate the general unit commitment problem as follows

min
X

g2G

X

t2T

cg(t) (1a)

s.t.
X

g2G

Ag(pg, pg, ug)+N(s) =L (1b)

(pg, pg, ug, cg)2⇧g 8g 2 G. (1c)

Here cg is the vector cost associated with pg, pg, ug, such that the objective function (1a) is to

minimize system operation cost. The vectors pg, pg, and ug represent the feasible generation

schedule, maximum power available, and the on/o↵ status for generator g, respectively. The

matrix Ag(pg, pg, ug) determines how the generator interacts with the system requirements,

which are written in matrix form as equation (1b). Here the variable s is other potential

decision variables involving the operation of the system. Finally, constraint (1c) defines the

feasible region for each generator’s schedule and the cost associated with that schedule.

Because generators usually have a discrete component to their operation (they are either

on and operating above some minimum level P or o↵), the set ⇧g is often non-convex.

In reality the system constraints (1b) are non-convex as networks usually use alternating

current; in practice this is often approximated using a linear set of constraints. For the

purposes of this paper will we assume the system constraints are linear in nature, and we

consider only a minor variation with regards to how the reserve is modeled.

Most of the research for MIP formulations of UC has focused on better descriptions of

the non-convex set ⇧g. We will refer to the conv(⇧g) as the generator polytope. Tighter

descriptions for ⇧g tend to increase the linear-programming relaxation bound of (1), which

often reduces computation times by reducing the enumeration necessary to find and prove

an optimal solution. However, in general tighter descriptions tend to use more variables



Polyhedral Results for Generator Scheduling

1-binary variable model (1-bin)
◦ We can write the feasible region of  a generator using two variables per time period.
◦ 𝑝(𝑡) is the continuous variable representing the power output at time 𝑡.
◦ 𝑢(𝑡) is the binary variable representing if  the generator is on/off.
◦ There is a known convex hull description for this polyhedron with simple bounds on output and minimum up/down 

times, but it is vary large (exponential).
◦ But, a polynomial time cutting-plane method exists (Lee et al. 2004).

3-binary variable model (3-bin)
◦ Add to the 1-bin model two additional variables:
◦ 𝑣(𝑡) is the binary variable representing a turn on at time 𝑡,
◦ 𝑤(𝑡) is the binary variable representing a turn off at time 𝑡.
◦ The two additional variables are redundant. But, they allow us to write tight descriptions of  the generator polytope 

with minimum up/down times (Rajan and Takriti 2005), start-up and shutdown power constraints (Gentile et al. 
2017), and convex piecewise production costs (K. et al. 2018) (with additional variables for each piecewise segment) 
with a linear number of  constraints and variables.
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Polyhedral Results for Generator Scheduling

Shortest path formulation
◦ Add additional variables 𝑦(𝑡), 𝑡+) to represent at start-up at time 𝑡) and shutdown at time 𝑡+, on 

continuously in between, and additional variables z(𝑡), 𝑡+) to represent at shutdown at time 𝑡) and start-up 
at time 𝑡+, off  continuously in between.

◦ These start-up/shutdown sequences can be linked using a full shortest-path formulation (Pochet and Wolsey, 
2006), where the path is from “turn on” nodes to “turn off ” and from “turn off ” nodes to “turn on” nodes.

◦ This formulation has 𝑂(𝑇+) edges (variables), but provides a convex hull description for downtime 
dependent start-up costs. There is a clear link to the 𝑢, 𝑣, 𝑤 variables, so the prior results on start-
up/shutdown power and piecewise production costs carry through (note the edges themselves can enforce 
minimum up/down time).

◦ If  we are okay with integer optimal, we can use the “matching” formulation from K. et al. (2018), which 
keeps the 3-bin variables and only those 𝑧’s which represent a hot/warm start-up. The benefit is far fewer 
variables (on order 𝑇𝐶 − 𝐷𝑇 ⋅ 𝑇).
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Polyhedral Results for Generator Scheduling

Extended formulation
◦ To the shortest path formulation, add additional variables 𝑝(𝑡, 𝑡), 𝑡+) for the output of  the generator at time 
𝑡 given a start-up and time 𝑡) and a shutdown at time 𝑡+, on continuously in between.

◦ Requires on order 𝑇4 variables and constraints, but gives a convex hull representation for ramping 
constraints, and every other technical constraint mentioned (Frangioni and Gentile (2015), K. et al. (2018), 
Guan et al. (2018)).

◦ Very large but still polynomial. K. et al. (2018) uses it for cut-generation.
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Choosing a Formulation
To summarize:
◦ 1-bin formulation (smallest): Not a convex hull for any interesting phenomenon 
◦ 3-bin formulation (small): Convex hull for minimum up/down times, convex piecewise production, and start-

up/shutdown power
◦ Shortest path (large): Convex hull for above plus downtime-dependent start-up costs, smaller if  integer optimal is 

sufficient
◦ Extended formulation (very large): Convex hull description for everything above plus ramping constraints, and 

more!

Computational experience to date indicates
◦ 1-bin: too weak
◦ EF: too large
◦ 3-bin: just right

Since the convex hull representation for a single generator is too large, it is important to consider which 
classes of  (perhaps imperfect) constraints we are going to include in a practical formulation.

In this case, engineering is more important than math.
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problem (UC). UC formulations have been an especially active area of research over the past twelve years,

due to their practical importance in power grid operations, and this paper serves as a capstone for this line

of work. We additionally provide publicly available reference implementations of all formulations examined.
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demic and real-world data sources. Driven by our computational experience from this and previous work,

we contribute some additional formulations for both production upper bound and piecewise linear produc-

tion costs. By composing new UC formulations using existing components found in the literature and new
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Key words : Unit commitment, mixed integer programming, mathematical programming formulations

Nomenclature
Indices and Sets

g ∈ G Thermal generators

l ∈Lg Piecewise production cost intervals for generator g: 1, . . . ,Lg.

s∈ Sg Start-up categories for generator g, from hottest (1) to coldest (Sg).

t∈ T Hourly time steps: 1, . . . , T .

[t, t′)∈Xg Feasible intervals of non-operation for generator g with respect to its min-

imum downtime, i.e., [t, t′) ∈ T × T such that t′ ≥ t+DT g, including times

(as necessary) before and after the planning horizon T .

n∈N Set of buses: 1, . . . ,N .

g ∈ Gn Thermal generators at bus n.

k ∈K Set of branches (lines): 1, . . . ,K.

k ∈ δ+(n) Lines to bus n, ⊆N .
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EGRET: Electrical Grid Research and Engineering Tools

EGRET is a Python-based package for electrical grid optimization based on the Pyomo optimization 
modeling language. EGRET is designed to be friendly for performing high-level analysis (e.g., as an 
engine for solving different optimization formulations), while also providing flexibility for 
researchers to rapidly explore new optimization formulations.

Major features:
◦ Expression and solution of  unit commitment problems, including full ancillary service stack
◦ Expression and solution of  economic dispatch (optimal power flow) problems (e.g, DCOPF, ACOPF)
◦ Library of  different problem formulations and approximations
◦ Generic handling of  data across model formulations
◦ Declarative model representation to support formulation development

EGRET is available under the BSD License at https://github.com/grid-parity-exchange/Egret
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A modular framework for UC formulations in EGRET11

◦ status_vars: 5
◦ power_vars: 3
◦ reserve_vars: 4

◦ generation_limits: 9
◦ ramping_limits: 8
◦ production_costs: 12

◦ uptime_downtime: 5
◦ startup_costs: 9

This instantiates a Pyomo ConcreteModel(model)based on the data provided in the object md, 
which can be used as part of  a script.

The eights components of  UCFormulation can be changed as easily as modifying a string in this file. 
Runtime checks to ensure incompatible components are not combined.

Number of  implemented formulations per component:



Some Theoretical Results

We give a convex hull formulation for a generator with convex piecewise production costs, start-up and 
shutdown ramp rates, generation limits, and minimum up/down times, which is 𝑂 𝑇 ⋅ 𝐿 , where 𝑇 is the 
number of  time periods and 𝐿 is the number of  piecewise segments.
◦ Proof  technique: an extension of  the proof  in Gentile et al. (2017) for a generator with generation limit, start-up and 

shutdown ramp rates, and minimum up/down times.

We also show that adding the start-up cost formulation from K. et al. (2018) to this results in a tight 
formulation when start-up costs are increasing.
◦ Proof: this is a corollary of  the above result and a result on the tightness of  the start-up cost formulation from K. et al. 

(2018).
◦ 𝑂( 𝑇𝐶 − 𝐷𝑇 ⋅ 𝑇 ⋅ 𝐿), where 𝑇𝐶 is the number of  time periods after which the generator goes cold and 𝐷𝑇 is the 

minimum downtime of  the generator.

Ramping still makes things difficult! Recent papers (Damci-Kurt et al. 2016, Pan and Guan 2017, 2018) suggest 
there is no linear convex hull formulation when ramping constraints are added.

Still, we attempt to tighten the ramping constraints by introducing new variable upper bound inequalities which 
do have a linear description.
◦ Experimental results from Damci-Kurt et al. (2016) and K. et al (2018) suggest variable upper bounds are often 

important in practice.
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Variable Upper Bound Inequalities13

Let                                                                 , so 𝑇67 is the number of  time periods the generator needs 
to ramp up from off  to maximum power and 𝑇68 is the number of  periods the generator needs to ramp 
down from maximum power to off.
If  𝑈𝑇 ≥ 𝑇67 + 𝑇68 + 2, then the following is a generalized upper bound inequality:

This limits the ramping trajectory when the generator is starting-up or shutting-down. Notice the condition 
𝑈𝑇 ≥ 𝑇67 + 𝑇68 + 2 ensures that one and only one of  the start-up and shutdown indicators 𝑣 and 𝑤
are 1 and that if  a 𝑣 or 𝑤 are 1 then 𝑢 𝑡 is 1.

A few similar inequalities can be derived in the case of  reserve-up, and modifications can accommodate a 
weaker assumption on 𝑈𝑇.
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4.3.1. Upper bounds with ramp limits When ramping constraints are added, there

maybe be an exponential number of generalized upper bound inequalities in the three- or

two-binary space which are tight (that is, they describe facets of the convex hull of the

generator polytope), even when SD= SD and RU =RD (Damcı-Kurt et al. 2016, Pan and

Guan 2016). However, computational experience with separating cuts from the generator

polytope suggests that upper bound inequalities are often important in practice (Damcı-

Kurt et al. 2016, Knueven et al. 2017), so they are worthy of special attention.

TODO: add some helpful pictures in this subsubsection, especially for the

proposed inequalities. One can derive polynomial classes of generalized upper bounds

similar to (21) and (22). As an example, let TRU =
j
P�SU
RU

k
and TRD =

j
P�SU
RD

k
. That is,

TRU (TRD) is the number of time periods the generator spends ramping to go from SU

(P ) to P (SD). Provided UT � TRU +TRD +2, the following inequality

p0(t) (P �P )u(t)�
TRUX

i=0

(P � (SU + iRU))v(t� i)�
TRDX

i=0

(P � (SD+ iRD))w(t+1+ i)

(25)

is valid for all t 2 [TRU , T � TRD]. The logic of (25) is similar to that of (21). Because

UT � TRD + TRD + 2, at most one of the v’s or w’s on the right-hand side is 1. When

one of these variables is 1, the bound on p0(t) is adjusted downward to take into account

the maximum power allowed by that ramp-up or ramp-down trajectory. Note that when

UT < TRU + TRD + 2, one can truncate the sums in (25) to ensure that: (1) most one v

or w is 1 given the uptime constraints, and (2) any v or w being 1 implies u(t) = 1, and

still have a valid inequality. We discuss an extension to when UT = TRU +TRD +1 in the

online supplement (Knueven et al. 2018c, Section B.2).

Another generalized upper bound inequality is a version of that proposed in Pan and

Guan (2016):

p(t) Pu(t)+ (P �SD)w(t+1)�
min{UT�2,TRU}X

i=0

(P �SU � iRU)v(t� i). (26)

which is pretty clearly a generalization and extension of inequality (21). It is also a trun-

cated version of (25), except we can replace p(t) with p(t) in this inequality and not loose

validity, as it deals only with the ramp-up trajectory after start-up and the shutdown

trajectory. In the online supplement we detail how this is derived from (Pan and Guan
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Figure 1 Feasible region defined by inequalities (39) for a generator that turns on at t= 1 and turns off at t= 9

with UT = 6, R=RU =RD, S = SU = SD, P = 0, and T
RU = T

RD = 2.

so it can also be seen as a generalization of (20). Note that because this inequality just

involves the ramp-up trajectory with the shutdown limit, we can replace p(t) with p(t) as

we have done here.

Note that in both cases care must be taken with the minimum uptime UT . In particular,

the minimum uptime must be such that if one of the v’s or w’s in inequalities (37) or (38)

is 1, this implies u(t) = 1. Like with (20), it must also be the case that at most one of the

v’s or w’s in each inequality can be 1 to maintain validity. Finally, these type of inequalities

need only “look back” (38) or “look forward” (37) enough time steps to capture TRU or

TRD. In the online supplement we detail how (37) is derived from (Ostrowski et al. 2012,

Eq. (19)) and how (38) is derived from (Pan and Guan 2016, Eq. (28)), and we also present

some additional variable upper bounds (Knueven et al. 2018c, Section B.5).

By combining the insights from (37) and (38), one can derive similar polynomial classes

of variable upper bounds. As an example, provided UT ≥ TRU + TRD + 2, the following

inequality

p(t)≤ Pu(t)−
TRU
∑

i=0

(P − (SU + iRU))v(t− i)−
TRD
∑

i=0

(P − (SD+ iRD))w(t+1+ i) (39)

is valid for all t ∈ [TRU , T − TRD]. The logic of (39) is similar to that of (37) and (38).

Because UT ≥ TRD + TRD + 2, at most one of the v’s or w’s on the right-hand side is 1.

When one of these variables is 1, the bound on p(t) is adjusted downward to take into

account the maximum power allowed by that ramp-up or ramp-down trajectory. Note that

when UT < TRU + TRD + 2, one can truncate the sums in (39) to ensure that at most

one v or w is 1 and any v or w being 1 implies u(t) = 1, given the minimum uptime

UT . Figure 1 demonstrates how the inequalities (39) encode the ramping trajectory for a



Tightening Piecewise Production Costs14

Easy observation: in the 3-bin formulation, piecewise production costs can be 
tightened using the start-up and shutdown ramps just like the production variable.
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piecewise segment l. Like Garver, we will assume throughout that P
l
>P for every l, and

for convenience we define P
0
= P . (A simple preprocessing of the data will ensure this is

the case.) Garver’s formulation can then be written as

pl(t)≤ (P
l
−P

l−1
)u(t) l ∈L, (42)

∑

l∈L

pl(t) = p′(t) (43)

∑

l∈L

C lpl(t) = cp(t). (44)

In actuality, Garver (1962) opted to use equation (43) to substitute out the p′ variables,

which do not explicitly appear in his model. However, with the basic limits on the p′(t)

variables, p′(t) ≤ (P − P )u(t), this formulation is locally ideal, that is, (42), (43), and

p′(t)≤ (P − P )u(t) along with the unit bounds on u(t) are a convex hull description for

these constraints (Wu 2016). This is essentially one of the production cost formulations

from Wu (2016), except with (12) applied to (43). Finally, we substitute
∑

l∈LC
lpl(t) for

cp(t) in the objective function whenever cp(t) appears in and only in an equality constraint.

Carrion and Arroyo (2006) suggest a slightly simpler formulation, replacing (42) with

pl(t)≤ (P
l
−P

l−1
) l ∈L. (45)

Notice that (45) is the same as (42), except the binary on/off variable is not in the former.

Because of this, this formulation does not have the locally ideal property (Sridhar et al.

2013).

Knueven et al. (2018a) tightens the bounds on pl(t) with the start-up and shutdown

variables using the start-up and shutdown ramp:

pl(t)≤ (P
l
−P

l−1
)u(t)−Cv(l)v(t)−Cw(l)w(t+1) l ∈L, (46)

where

Cv(l) :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 P
l
≤ SU

P
l
−SU P

l−1
<SU <P

l

P
l
−P

l−1
P

l−1
≥ SU

, Cw(l) :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 P
l
≤ SD

P
l
−SD P

l−1
<SD<P

l

P
l
−P

l−1
P

l−1
≥ SD

,
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If  𝑈𝑇 > 1, then this along with the minimum up/down time formulation from 
Rajan and Takriti (2005) is a perfect formulation for a generator with piecewise 
production costs, minimum up/down times, and start-up and shutdown ramping 
rates. Just like the result from Gentile et al. (2017), this can be appropriately 
modified for 𝑈𝑇 = 1.

If  there are irredundant ramping constraints, then we can tighten the bounds on 
each bin as we did the production variable. 



Test Instances

One academic test set and and two test sets based on real-world data. All are an hourly 48-hour day-
ahead UC.
◦ RTS-GMLC: 73 thermal generators, 81 renewable generators, 73 buses, 120 transmission lines. Hourly day-

ahead data for load and renewable generation for a year. We selected twelve representative days, considered 
both with and without transmission for a total of  24 test instances.

◦ CAISO: 410 schedulable thermal generators, 200 must-run thermal generators. We considered five 
demand/renewables scenarios under four reserve policies: 0%, 1%, 3%, and 5% of  demand, for a total of  20 
test instances.

◦ FERC/PJM: Generation set publically available from FERC, approximately 900 thermal units, with demand, 
reserve, and wind data publically available from PJM for 2015. We selected twelve representative days, and 
considered the wind data as-is (low-wind) and also scaled it to achieve 30% wind penetration for the year, for 
24 test instances total.

The above makes for a total of  68 UC instances across three set of  generators.
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Some Formulations Considered
CA: Carrion and Arroyo (2006)

OAV-O: Ostrowski et al. (2012) “Original,” similar to Arroyo and Conejo (2000)

OAV-UD: Ostrowski et al. (2012) “Up/Downtime”

OAV: Ostrowski et al. (2012) with 2-period consecutive ramping inequalities from this paper

OAV-T: Ostrowski et al. (2012) with all ramping and generalized upper bound inequalities from this paper

MLR: Morales-Espana et al. (2013)

ALS: Atakan et al. (2018)

KOW: K. et al. (2018)

T: “Tight” New formulation using some ideas from the literature and the      generalized upper bounds and 
production costs introduced in this paper

Co: “Compact” New formulation using ideas from the literature that emphasize compactness

R1: “Random 1” New formulation based on sampling formulations and testing against the RTS-GMLC instances

R2: “Random 2” Another new formulation based on sampling and testing against the RTS-GMLC instances
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Computational Platform

Dell PowerEdge T620 (circa 2013)
◦ Two Intel Xeon E5-2670 processors (16 cores/32 threads)
◦ 256GB RAM
◦ Ubuntu 16.04
◦ Gurobi 8.0.1

No other major jobs were running at the time of  the computational experiments, and Gurobi
settings were preserved at default except a time limit.
◦ Hence all UC MIPs we attempt to solve to 0.01% optimality gap.

The time limit was set at 300 seconds for the RTS-GMLC and CAISO instances, and a time limit of  
600 seconds was imposed for the larger FERC instances.
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Computational Results: RTS-GMLC Instances

The R1 and R2 formulations do well on this test set.
◦ Not too surprising since they were selected based on their performance on this test set.
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Table 7: Summary computational results for RTS-GMLC instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd

CA 300.0 13.806% 24 0 0
OAV-O 172.8 0.3335% 13 0 0

OAV-UD 163.2 0.2541% 13 0 0
OAV 169.7 0.2352% 12 0 0

OAV-T 178.0 0.2498% 12 0 0
MLR 86.19 0.0165% 5 0 0
ALS 58.29 0.0122% 2 1 1

KOW 94.81 0.0165% 4 0 1
T 50.65 0.0121% 2 4 4

Co 43.11 0.0121% 1 1 4
R1 32.37 0.0114% 1 14 6
R2 36.94 0.0114% 1 4 8

E Summary Computational Results, Including Other Formula-

tions

E.1 RTS-GMLC

Summary computational results for the RTS-GMLC instances are reported in Table 7. As in the main text,

the time limit was set at 300 seconds. Full results are in Tables 17 and 20. We note formulation CA is

completely uncompetitive on these instances, and fails to find and certify quality solution (with a optimality

gap less than 1%) for every instance within the time allotted. The OAV formulations all perform similarly,

and are again uncompetitive, but at least manages to find and certify a quality solution in most instances.

Formulation ALS, while clearly superior to MLR and KOW on this test set, is outperformed by Co, R1,

and R2.

E.2 CAISO

Summary computational results for the CAISO instances are reported in Table 8. As in the main text, a

time limit of 300 seconds was also set for these instances. Full results are in Tables 18 and 21. On these

instances we see that the CA and OAV variants are uncompetitive. The CAISO generation set has mostly

small, flexible generators with UT = DT = 1, so the poor representation of the start-up costs used for ALS

is problematic, though it is still able to find and certify a quality solution in all cases by the time limit.
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Computational Results: CAISO Instances

Here the T, Co, R2, and KOW formulations perform well.
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Table 8: Summary computational results for CAISO instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd

CA 300.0 1.0987% 20 0 0
OAV-O 300.0 6.7647% 20 0 0

OAV-UD 300.0 6.2269% 20 0 0
OAV 300.0 3.6319% 20 0 0

OAV-T 300.0 6.1679% 20 0 0
MLR 117.1 0.0119% 2 0 1
ALS 260.4 0.0577% 12 0 0

KOW 79.02 0.0102% 2 4 7
T 56.90 0.0100% 0 15 3

Co 100.6 0.0100% 0 0 5
R1 147.4 0.0102% 1 0 1
R2 104.1 0.0100% 1 1 3

Table 9: Summary computational results for FERC instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd

CA 600.0 43.333% 24 0 0
OAV-O 599.7 11.716% 23 0 0

OAV-UD 588.2 1.4575% 20 0 0
OAV 588.4 1.3104% 21 0 0

OAV-T 582.4 1.4389% 22 0 0
MLR 340.5 0.0555% 3 4 1
ALS 394.7 0.0933% 7 2 2

KOW 390.2 0.0117% 2 3 5
T 268.6 0.0104% 1 8 4

Co 309.5 0.0596% 3 4 5
R1 308.9 0.0480% 3 3 6
R2 373.1 0.0665% 4 0 1
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Computational Results: FERC Instances

T is clearly the superior performer on this set of  instances.
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Summary

Formulation T performs well across the test set.
◦ Weaker performance on the RTS-GMLC is mainly due to the network-constrained instances, which require 

quite a bit of  enumeration. We used a 𝐵-𝜃 representation for the network, for which Gurobi has a difficult 
time generating valid cuts.

◦ Typically operators use a PTDF formation for the network, which will have different behavior.
◦ Even in the worst case across the 68 instances, with formulation T Gurobi terminates at the time limit with 

only a 0.05% gap, which is the best worst-case performance.

Formulations R1 and R2 both performed well on RTS-GMLC, suggesting it may be possible to 
specialize the formulation used against typical instances.
◦ Since the generation fleet often does not change, it may be possible to “fit” a formulation for typical or 

difficult day-ahead instances.
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Epilogue: Analysis of formulation T
We attempted to improve on formulation T by swapping one of  its eight 
components for another from the literature.
◦ Also in part to see which components are important to a good formulation.

The swaps that were improving are below.
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Table 10 Selected results for changing various components of the tight formulation T.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)

T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%

uptime/downtime
RT 2bin: (4)(7) 48.29 0.0120% 51.30 0.0100% 235.1 0.0100%

generation limits
MLR: (21)(22) 51.29 0.0122% 52.44 0.0100% 254.8 0.0100%
GMR: (21)(24) 51.37 0.0122% 52.42 0.0100% 254.1 0.0100%

ramping limits
MLR: (33)(34) 49.28 0.0119% 48.53 0.0100% 242.6 0.0100%

piecewise production
CA: (45)(46)(47) 48.93 0.0119% 57.87 0.0100% 230.2 0.0100%

to the more compact formulations Co, R1, R2. An examination of the solver logs shows

that Gurobi seems to have a di�cult time generating root-node cuts with a B,✓ DC

network like the one considered in this paper. Typically system operators do not use this

network representation, and instead rely on a Power Transfer Distribution Factor (PTDF)

formulation, or something similar, for the DC network (Van den Bergh et al. 2014, Chen and

Wang 2017). Because the vast majority of transmission lines will not have binding thermal

limits, those likely not to be at their limits can be dropped from the formulation (Chen et al.

2016). Further, one can generate cover inequalities for the PTDF transmission constraints,

which may tighten the relaxation (Wu 2016).

7.3. Analysis of the “Tight” Formulation

We undertook a further computational study to determine what aspects of formulation T

are essential to its performance, and conversely which aspects could possibly be improved

upon. For brevity, we report the full results in the online supplement (Knueven et al.

2018c, Section F), but provide selected results in Table 10. Overall, there is some room

for improvement over formulation T. Examining Table 10, formulating the uptime and

downtime constraints using only two binary variables (in this case ug(t) and vg(t)) resulted

in a surprising improvement on the larger CAISO and FERC instances, with no degradation

in performance on the RTS-GMLC instances. One could also consider using the simpler

MLR or GMR generation limits from Morales-España et al. (2013a) and Gentile et al.

(2017), respectively. Interestingly the simple ramping limits from Morales-España et al.

(2013a) improved the performance of T, this is likely because with the generalized upper

Hence there is room for improvement on T.
◦ The most surprising result is the improvement from using the 2-bin formulation for downtime.

Further refinement could be done, though at the risk of  over-fitting for these instances.



Conclusions

◦ Comprehensive literature and computational survey of  UC formulations is available
◦ Along with open-source implementations of  all the examined (and many more 

unexamined) UC formulations
◦ Literature and computational survey uncovered a new state-of-the-art

◦ Additional challenges remain
◦ Tightening the interaction between the unit commitment and the transmission system (Van den Bergh et al. 2014, Wu 

2016)
◦ Virtual transactions, which may weaken our ability to tighten system constraints (Chen et al. 2016)
◦ More realistic modeling of  the transmission system, including the need for reactive power support (Castillo et al. 2016)
◦ Better modeling of  ancillary service products, which are relatively neglected by the literature and tend to vary by 

market
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